# EXECUTIVE SUMMARY OF ENVIRONMENTAL IMPACT ASSESSMENT AND ENVIRONMENTAL MANAGEMENT PLAN

For

# LUMSHNONG LIMESTONE MINES LUMSHNONG, JAINTIA HILLS DISTRICT MEGHALAYA (OVER ML AREA OF 70.00 HA.)

**Prepared For** 

### M/S CEMENT MANUFACTURING COMPANY LIMITED LUMSHNONG, JAINTIA HILLS DISTRICT MEGHALAYA

Prepared By



GEOMIN CONSULTANTS (P) LTD.

(ISO 9001:2008 Certified Company) 267, Kharvel Nagar, Bhubaneswar, Orissa Phone : (0674-2392080, Fax:(0674) 2390687 E-mail ID: geomin@satyam.net.in

### **CONTENTS**

### Sl. No.

### Chapters

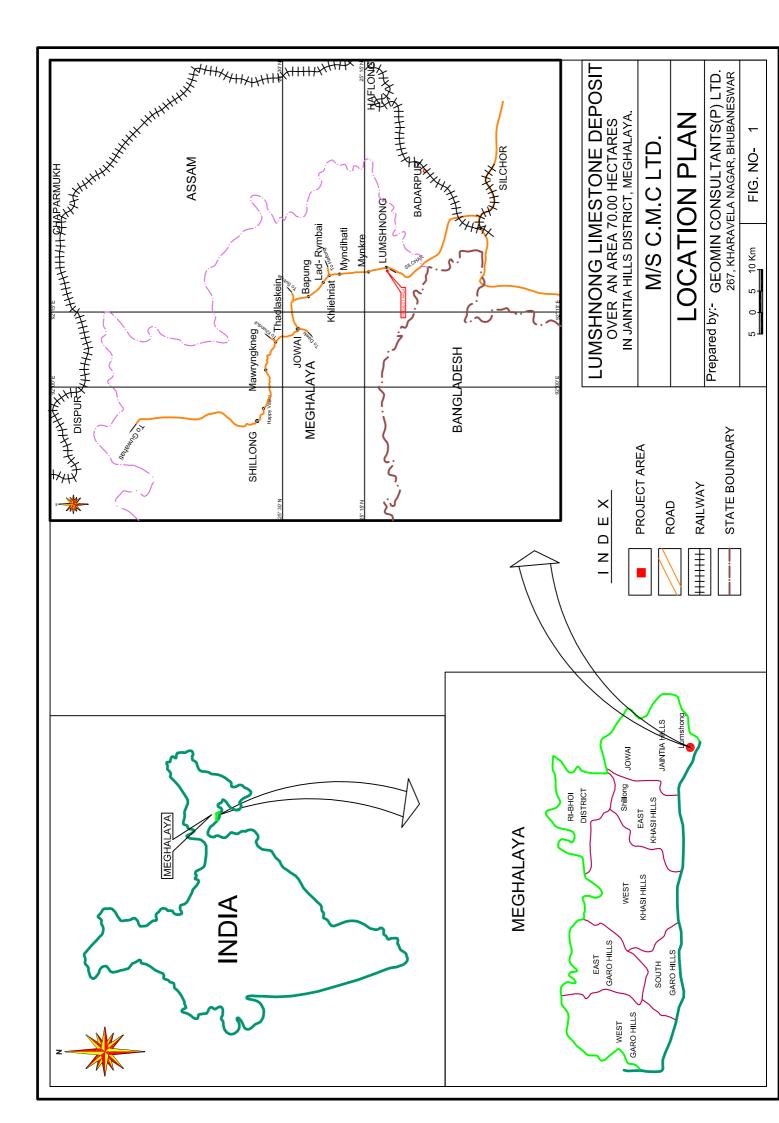
Page No

| 1 | Project Description                  | 1 |
|---|--------------------------------------|---|
| 2 | Description of Environment           | 2 |
| 3 | Anticipated Environmental Impact and | 5 |
|   | mitigation measures                  |   |
| 4 | Environmental Monitoring programme   | 7 |
| 5 | Additional Studies                   | 7 |
| 6 | Project Benefits                     | 7 |
| 7 | Environmental Management Plan        | 8 |

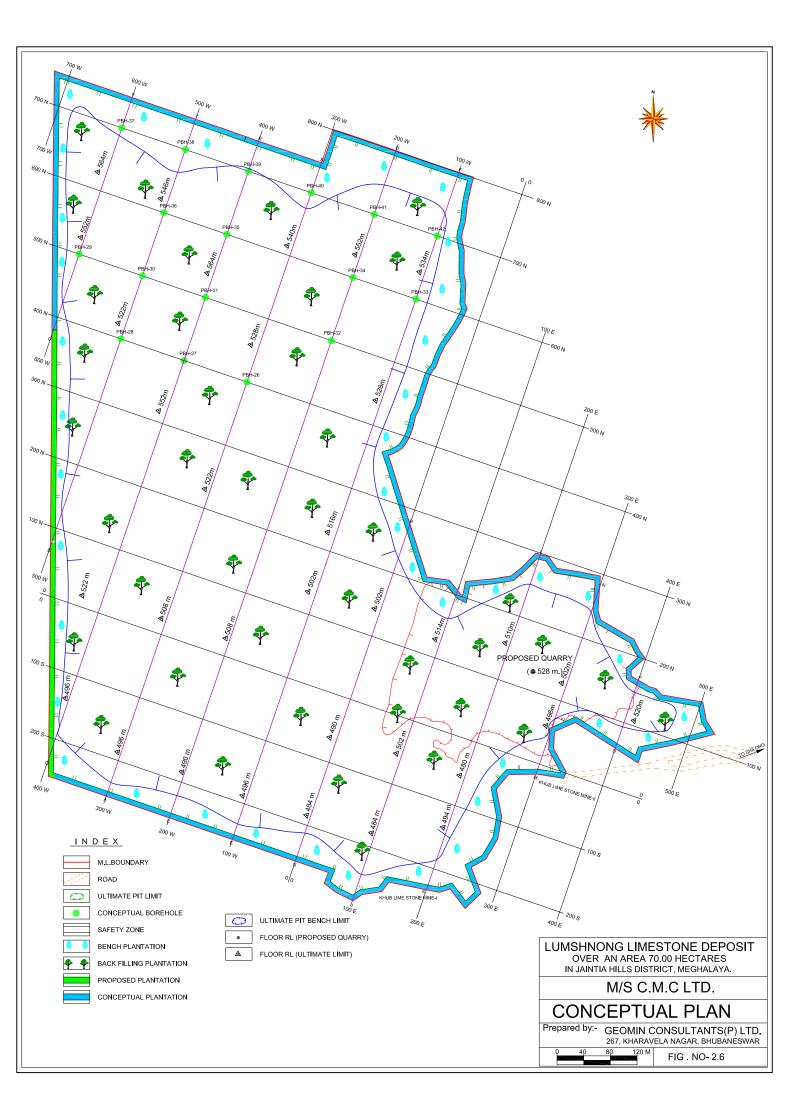
| Fig.<br>No. | Maps                 | After page |
|-------------|----------------------|------------|
| 1           | Location Plan        | 1          |
| 2           | Lease Plan           | 1          |
| 3           | Conceptual Plan      | 1          |
| 4           | Wind Rose diagram    | 2          |
| 5           | Sample Location Plan | 2          |
| 6           | Post closure Plan    | 7          |

### **EXECUTIVE SUMMARY**

#### 1. **PROJECT DESCRIPTION**


Mining Lease for the Lumshnong limestone project area over 70 ha. was granted by Meghalaya state Govt. vide letter number MG/54/2009/190 dated 22.12.2009 to M/s Cement Manufacturing Company Limited which is a public limited company. The project area is of private land category. No forest area involved. The mining operation will be carried out as per approved mining plan . Mining plan for the period 2010-11 to 2014-15 was submitted to IBM, Govt. of India. TOR has been granted by MOEF, Govt. of India for production capacity upto 9,00,450 MT as per the pre-feasibility report. This is a new mining proposal. The Limestone from the mines shall be utilised in the cement plant of the company. Cement Manufacturing Company Ltd (CMCL) an ISO9001:2000 certified company was incorporated as a Public Limited Company on 2<sup>nd</sup> November 2001 with Registered office and works at Lumshnong, Jaintia Hills district, Meghalaya. CMCL was granted licence for setting up a 900 TPD cement plant at Lumshnong village, Jaintia Hills district Meghalaya by the Govt. of Meghalaya in the year 2002 and subsequently was granted for expanding the capacity to 2400 TPD which was obtained the Environmental; clearance from SEIAA vide letter No. SEIAA/ Project-6/ 2008 / 23 Dated 16.03.2010 .

| State         | Meghalaya                                       |
|---------------|-------------------------------------------------|
| District      | Jaintia hills                                   |
| Village       | Lumshnong                                       |
| Lease Area    | 70 ha                                           |
| Toposheet No. | 83C/W                                           |
| Latitude      | $25^{0}10'05''$ to $25^{0}10'32''N$             |
| Longitude     | $92^{\circ}21'46.4''$ to $92^{\circ}22'25.6''E$ |
| Altitude      | 498 m AMSL to 630m AMSL                         |


#### **Geographical Location (Fig. 1)**

There is no public road or railway line within the M.L area. The lease area is situated at distance 1.5 km west of NH-44 connecting Shillong to Silchar. The nearest railway station at a distance of 80km from Lumshnong is Badarpur on Guwahati-Lumding-Silchar meter gauge section of N.E.F. Railway. **Fig. 1.** The lease area map is given in **Fig. 2** Topography of the ML area and its surroundings are rugged and mountainous. Maximum and minimum contours passing through the area are 630m and 498m respectively. Northern part of the area is at a higher elevation with respect to southern and south-western part.

A seasonal nala flows from north to south in the southern part of the mining lease area. This nala joins a perennial nala running E-W at a distance of 700m towards south of the area.

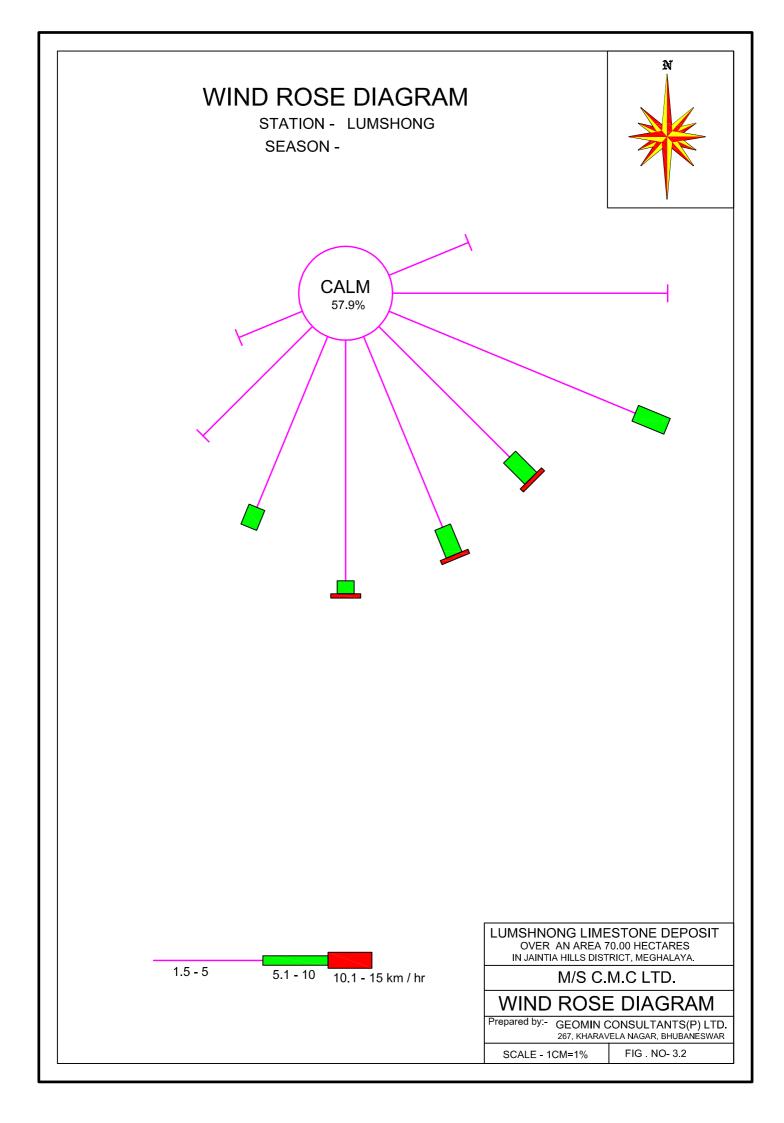


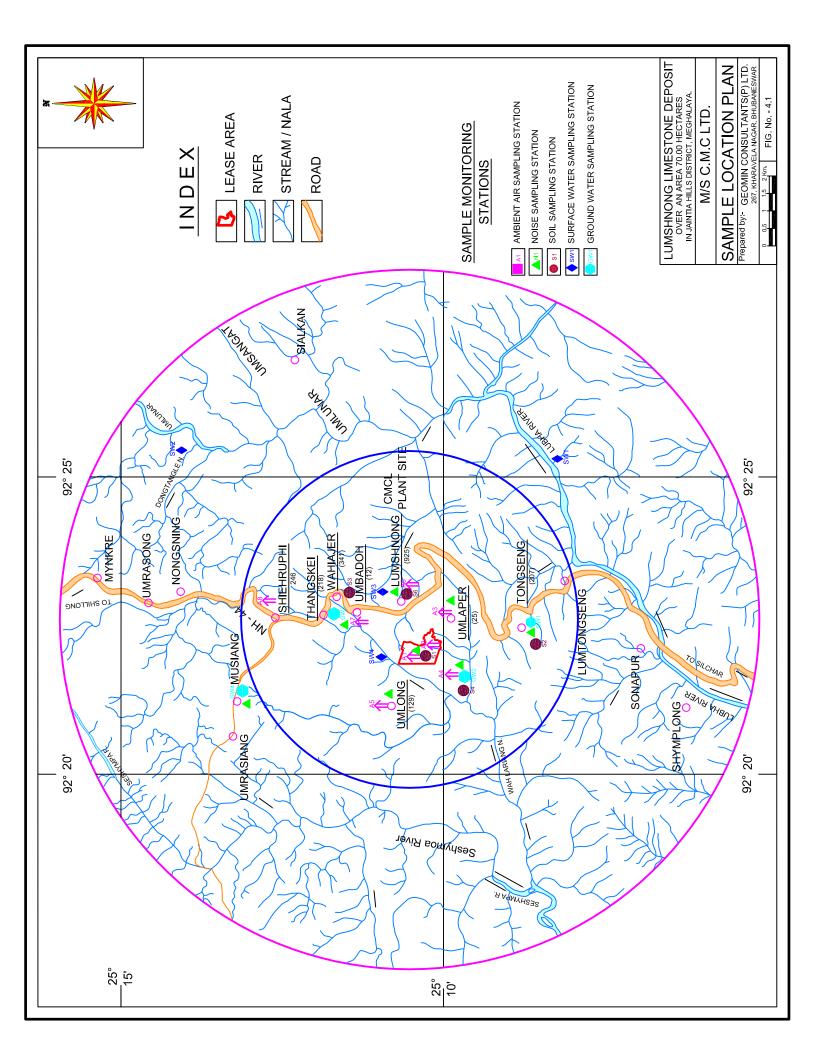




The reserves of the area are as follows.

|            | Geologi    | cal Reserve (         | (Tonne)    | Mineable reserve (Tonne) |             |            |
|------------|------------|-----------------------|------------|--------------------------|-------------|------------|
|            | Proved     | Proved Probable Total |            | Proved Probable          |             | Total      |
| Lime Stone | 26,998,200 | 36,588,375            | 63,586,575 | 24,618,150               | 3,31,98,075 | 57,816,225 |


Based on the bore hole drilled in the limestone ore zone the grade wise resources have been computed below by taking log analysis data into account.


Opencast fully mechanised method of mining will be adopted on two shift basis. Machineries/vehicles like crawler drill, air compressor, hydraulic excavators, dumpers, etc. will be used. The limestone and sandstone OB shall be dislodged by crawler drill and blasting. Limestone and Sandstone will be handled by dumpers/ tipper trucks and Excavators. Height and width of the mine benches would be 6 meters and 15 meters respectively. Slope of the benches will be  $22^{\circ}$  where as overall slope of the pit will be  $45^{\circ}$ . Production will be upto 9,00,450 TPA of limestone. Keeping the above production, the life of the mine will be 66 years, including 5 years of plan and 61 years of beyond plan period. The capital cost of the project is 6.65 crores. The total amount of Sandstone OB generated will be 3.645 Million Cum during life of the mine including 3,21,453 cum of OB during first 5 years of plan period. 70% of the waste material shall be used for backfilling and 30 % shall be utilised as an additive to make up the deficiency of Silica in the rawmix and road maintenance. There would be a temporary dump over 2.25 ha, of land for storage of sandstone OB and it's subsequent use for back filling and the area will be utilized for mining. The capacity of the dumps will be 2.25 lakh cum. .The height & width of the terraces will be 2m and 5m respectively and maximum height of the dump will be 10m. The sandstone would be stacked in dump yard and will be utilized for backfilling of mined out area. Employment will be provided for 137 people in two shift basis. Ultimate working depth of the mine will be 480m AMSL where as ground water table is at 420m AMSL (in summer) and 425m AMSL (in rainy season). Hence mining will not touch ground water table. About 75 Cum of water will be required daily and 65 Cum shall be met from surface water source and balance 10 Cum treated water will be supplied from CMCL Plant site

### 2. DESCRIPTION OF THE ENVIRONMENT

Different environmental parameters required to evaluate the prevailing scenario have been generated / collected and compiled for the period from March 2011 to May 2011. The annual normal rainfall of Shillong area is 2415.3 mm. The temperature ranged from  $14.6^{\circ}$ C to  $29.0^{\circ}$ C while the relative humidity varied from 65.0% to 95.0% during the season. The predominant wind direction is from Southern side. The wind rose diagram is shown in **Fig. 4**. The sample location map is indicated in **Fig. 5**.

The CPCB value for rural and residential areas for PM 10, SO<sub>2</sub>, NO<sub>x</sub> and CO (24 hourly) are 100, 80, 80 and 2000 $\mu$ g/cum respectively. We had taken various ambient air quality datas from eight stations for minimum one season. The analysis results are presented as follows.





We had tested all the parameters as prescribed by CPCB but the all the parameters found below the permissible limit in the study area, so we had not given them in them in tabular form.

| Zone   | Station<br>Code | Station    | Value of      | PM10   | SO <sub>2</sub> | NOx    |
|--------|-----------------|------------|---------------|--------|-----------------|--------|
|        |                 | Lease area | MAX           | 53.3   | 14.7            | 16.4   |
| Core   | A 1             |            | MIN           | 38.3   | 8.5             | 10.2   |
| Zone   | A1              |            | AVERAGE       | 45.92  | 11.77           | 13.07  |
|        |                 |            | 95 PERCENTILE | 51.2   | 14.125          | 15.45  |
|        |                 | Lease area | MAX           | 49.7   | 16.8            | 15.8   |
|        | A2              |            | MIN           | 38.3   | 9.7             | 10.5   |
|        | A2              |            | AVERAGE       | 44.67  | 13.22           | 13.29  |
|        |                 |            | 95 PERCENTILE | 49.275 | 16.175          | 15.2   |
|        |                 |            | MAX           | 47.7   | 12.5            | 12.5   |
|        |                 |            | MIN           | 40.4   | 7               | 8.5    |
|        | A3              | Umlaper    | AVERAGE       | 44.25  | 9.35            | 10.59  |
|        |                 | Village    | 95 PERCENTILE | 47.175 | 11.75           | 12.375 |
|        | A4              |            | MAX           | 45.8   | 11.7            | 15.7   |
|        |                 | Khub       | MIN           | 40.2   | 7.5             | 10.3   |
|        | A4              | KIIUO      | AVERAGE       | 42.64  | 9.67            | 12.45  |
|        |                 |            | 95 PERCENTILE | 45.35  | 11.275          | 14.175 |
|        |                 |            | MAX           | 48.6   | 14.7            | 15.5   |
|        | A5              | Umlong     | MIN           | 38.5   | 8.5             | 10.1   |
|        | AJ              |            | AVERAGE       | 42.18  | 11.03           | 12.71  |
|        |                 |            | 95 PERCENTILE | 45.85  | 12.8            | 14.75  |
|        |                 |            | MAX           | 48.9   | 15.7            | 18.7   |
| Buffer | A6              | CMCL Plant | MIN           | 37.2   | 10.5            | 12     |
|        | A0              | Site       | AVERAGE       | 41.96  | 13.25           | 15.65  |
| zone   |                 |            | 95 PERCENTILE | 45.42  | 15.47           | 18.37  |
|        |                 |            | MAX           | 47     | 12.5            | 13.7   |
|        | A7              | Umbadoh    | MIN           | 41.5   | 8               | 10     |
|        | A/              | Umbadon    | AVERAGE       | 44.46  | 10.03           | 11.46  |
|        |                 |            | 95 PERCENTILE | 46.37  | 11.65           | 13.10  |
|        |                 |            | MAX           | 48.8   | 13.5            | 15     |
|        | 4.0             | Chiemanhi  | MIN           | 39.5   | 8.8             | 10.3   |
|        | A8              | Shieruphi  | AVERAGE       | 42.38  | 11.15           | 12.58  |
|        |                 |            | 95 PERCENTILE | 44.6   | 13.25           | 14     |

The vehicular movement are the main noise source during the study period. The noise level data are varying from 42.5 to 61.5dBA in the day time and in the night it varies from 37.3 to 42.6 dBA. The noise level of the area is within the prescribed limit.

The annual ground water recharge is 16.8 Ham. The depth to water level in summer ranges from 198 to 200m below ground level. The quality of surface and ground water is within the prescribed limit of Inland Surface Water, class-A, IS 3025 and IS 10500 respectively.

### Analysis Result of Surface Water Samples

| Parameter                                                                                                                                         | Unit | Standard   |                 | Surface Wa      | ter Samples     |                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
|                                                                                                                                                   |      |            | SW <sub>1</sub> | SW <sub>2</sub> | SW <sub>3</sub> | SW <sub>4</sub> |  |  |  |
| pН                                                                                                                                                |      | 6.5 - 8.5  | 6.5             | 6.8             | 6.9             | 6.7             |  |  |  |
| Colour                                                                                                                                            |      | Colourless | Colourless      | Colourless      | Colourless      | Colourless      |  |  |  |
| Odour                                                                                                                                             |      | Odourless  | Odourless       | Odourless       | Odourless       | Odourless       |  |  |  |
| Total solid                                                                                                                                       | mg/1 |            | 265             | 212             | 225             | 235             |  |  |  |
| Total suspended solid                                                                                                                             | mg/1 |            | 10              | 12              | 15              | 10              |  |  |  |
| TDS                                                                                                                                               | mg/1 | 1500       | 255             | 200             | 210             | 225             |  |  |  |
| Oil and Grease                                                                                                                                    | μg/l |            | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Total residual chlorine                                                                                                                           | mg/1 | 0.2        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Total kjeldahl nitrogen as N                                                                                                                      | mg/1 |            | 3.5             | 3.0             | 3.8             | 2.7             |  |  |  |
| Ammoniacal nitrogen as N                                                                                                                          | mg/1 | 50         | 0.60            | 0.65            | 0.60            | 0.65            |  |  |  |
| Free ammonia as NH <sub>3</sub>                                                                                                                   | mg/1 |            | BDL             | BDL             | BDL             | BDL             |  |  |  |
| BOD                                                                                                                                               | mg/1 | 3          | 0.6             | 0.7             | 0.2             | 0.5             |  |  |  |
| Arsenic as As                                                                                                                                     | mg/1 | 0.2        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Mercury as Hg                                                                                                                                     | mg/1 |            | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Lead as Pb                                                                                                                                        | mg/1 | 0.1        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Total chromium as Cr                                                                                                                              | mg/1 | 2.0        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Hexavalent Chromium as Cr                                                                                                                         | mg/1 | 0.05       | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Copper as Cu                                                                                                                                      | mg/1 | 3.0        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Cadmium as Cd                                                                                                                                     | mg/1 | 0.01       | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Zinc as Zn                                                                                                                                        | mg/1 | 15         | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Selenium as Se                                                                                                                                    | mg/1 | 0.05       | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Nickel as Ni                                                                                                                                      | mg/1 |            | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Boron as B                                                                                                                                        | mg/1 | 2.0        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Cyanide as CN                                                                                                                                     | mg/1 | 0.05       | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Chloride as Cl                                                                                                                                    | mg/1 | 600        | 25              | 20              | 20              | 15              |  |  |  |
| Nitrate as NO <sub>3</sub>                                                                                                                        | mg/1 | 50         | 0.7             | 0.6             | 0.7             | 0.8             |  |  |  |
| Flouride as F                                                                                                                                     | mg/1 | 1.5        | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Dissolved PO <sub>4</sub>                                                                                                                         | mg/1 | 5.0        | 0.3             | 0.1             | 0.2             | 0.1             |  |  |  |
| Sulphate as SO <sub>4</sub>                                                                                                                       | mg/1 | 400        | 10              | 15              | 12              | 15              |  |  |  |
| Sulphide as S                                                                                                                                     | mg/1 | 2.0        | 0.5             | 0.5             | 0.8             | 0.9             |  |  |  |
| Iron as Fe                                                                                                                                        | mg/1 | 5.0        | 0.6             | 0.5             | 0.3             | 0.6             |  |  |  |
| Silica as SiO <sub>2</sub>                                                                                                                        | mg/1 |            | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Phenolic compound                                                                                                                                 | mg/1 | 0.005      | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Residual pesticide                                                                                                                                | mg/1 | Absent     | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Sodium Percentage                                                                                                                                 | mg/1 | 60         | BDL             | BDL             | BDL             | BDL             |  |  |  |
| Calcium as Ca                                                                                                                                     | mg/1 | 75         | 25              | 30              | 30              | 20              |  |  |  |
| Magnesium as Mg                                                                                                                                   | mg/1 | 30         | 3               | 3               | 3.5             | 2               |  |  |  |
| Total hardness                                                                                                                                    | mg/1 | 300        | 74              | 86.5            | 88.4            | 57.7            |  |  |  |
| Coliform cells/100ml BDL BDL BDL BDL BDL BDL                                                                                                      |      |            |                 |                 |                 |                 |  |  |  |
| Standard : IS 3025, Class - A, Inland Surface Water   Surface water sampling stations:- SW1: Lubha river   SW1: Lubha river SW2-Dongtanglen river |      |            |                 |                 |                 |                 |  |  |  |

| Sl. | Parameters                                                           | Units | Standards  |                 | Ground Wa       | ter Samples |                 |  |  |  |
|-----|----------------------------------------------------------------------|-------|------------|-----------------|-----------------|-------------|-----------------|--|--|--|
| No. |                                                                      |       |            | GW <sub>1</sub> | GW <sub>2</sub> | GW3         | GW <sub>4</sub> |  |  |  |
| 1   | Colour                                                               | Hazen | Colourless | Colourless      | Colourless      | Colourless  | Colourless      |  |  |  |
| 2   | Odour                                                                |       | Odourless  | Odourless       | Odourless       | Odourless   | Odourless       |  |  |  |
| 3   | рН                                                                   |       | 6.5-8.5    | 6.4             | 6.7             | 6.9         | 6.8             |  |  |  |
| 4   | Dissolved oxygen                                                     | mg/l  | 3.0 (min)  | 6.0             | 5.2             | 5.5         | 5.4             |  |  |  |
| 5   | T.D.S                                                                | mg/l  | 500        | 135             | 125             | 85          | 125             |  |  |  |
| 6   | Suspended solid                                                      | mg/l  |            | 8               | 10              | 4           | 9               |  |  |  |
| 7   | Chloride as Cl                                                       | mg/l  | 250        | 8               | 12              | 10          | 10              |  |  |  |
| 8   | Sulphate as SO <sub>4</sub>                                          | mg/l  | 200        | 12              | 7               | 8           | 4               |  |  |  |
| 9   | Cyanide as CN                                                        | mg/l  | 0.05       | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 10  | Fluoride as F                                                        | mg/l  | 1.0        | 0.1             | 0.05            | 0.05        | BDL             |  |  |  |
| 11  | Phosphate as PO <sub>4</sub>                                         | mg/l  |            | 0.2             | 0.1             | 0.1         | 0.1             |  |  |  |
| 12  | Amonia as NH <sub>3</sub>                                            | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 13  | Boron as B                                                           | mg/l  | 1.0        | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 14  | Calcium as Ca                                                        | mg/l  | 75         | 18              | 14              | 15          | 16              |  |  |  |
| 15  | Magnesium as Mg                                                      | mg/l  | 30         | 6               | 3               | 7           | 5               |  |  |  |
| 16  | Arsenic as As                                                        | mg/l  | 0.2        | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 17  | Barium as Ba                                                         | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 18  | Cadmium as Cd                                                        | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 19  | Total Chromium                                                       | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 20  | Hexavalent                                                           | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
|     | Chromium                                                             |       |            |                 |                 |             |                 |  |  |  |
| 21  | Copper as Cu                                                         | mg/l  | 0.05       | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 22  | Iron as Fe                                                           | mg/l  | 0.3        | 0.01            | 0.01            | 0.01        | 0.01            |  |  |  |
| 23  | Selenium as Se                                                       | mg/l  | 0.01       | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 24  | Silver as Ag                                                         | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 25  | Zinc as Zn                                                           | mg/l  | 5.0        | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 26  | Phenol                                                               | mg/l  | 0.001      | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 27  | Pesticides                                                           | mg/l  | Absent     | BDL             | BDL             | BDL         | BDL             |  |  |  |
| 28  | Radioactive substance                                                | mg/l  |            | BDL             | BDL             | BDL         | BDL             |  |  |  |
|     | dard : IS 10500                                                      |       |            |                 |                 |             |                 |  |  |  |
|     | und water sampling stat                                              |       |            |                 |                 |             |                 |  |  |  |
| GW1 | GW1- Tongseng well, GW2-Khub well, GW3- Thangskei, GW4- Musiang well |       |            |                 |                 |             |                 |  |  |  |

#### **Analysis Result of Ground Water Samples**

The area exposes hilly ever green and dry deciduous forests. The commonly seen flora species are pine. The recorded fauna species are common reptiles, birds, amphibians, insects and few mammals such as Bamboo Rat, Squirrel, Otter, House rat, .Monkey. No rare or endangered flora and fauna species are found.

# 3. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Mining activities and related operations can cause several beneficial and adverse impacts on the environment. The adverse impacts are proposed to mitigate. Using 'Matrix method' the impact on the environment has assessed.

The expected beneficial impacts on the society are Health, Population/Migration, Employment, Literacy, Services and Aesthetic sense. The proposed mining operation will

generate direct employment for 137 nos. of employees and indirectly for 200 people. Communication, education, medical, power and employment facilities will be improved.

Various mining operations will generate dust and gaseous pollutants. In a view to the scale of mining and existing environmental back ground condition it is anticipated that increment impact due to the mining operation will be within the prescribed limit. Further mitigation measures like water sprinkling and plantation will reduce the pollution level in the area.

Contamination/siltation of surface water might occur due to mixing of runoff during rainy season with high-suspended particles, likely to be caused due to wash out of overburden. As it is proposed to construct settling tank and garland drain around the mining area the level of concentration of suspended particles in the surface water shall be well within the prescribed limit.

The contamination of surface water may cause diseases in the area. Treatment of water will be done. Medical treatment will be provided as per the requirement. The impact on ground water will be marginal since proposed mining activities will be much above the ground water table.

Due to the opencast mining project, the noise level of the area due to drilling, blasting, transportation and running of heavy machineries will increase. Controlled blasting, proper maintenance of machineries and soundproof cabins, noise level can be minimized.

Compensatory afforestation will neutralize this impact on flora. The present and so also proposed land use pattern of the mine will be as follows. (Fig. 3)

| Classification of<br>land | Village/District        | Total area in Hects.         |
|---------------------------|-------------------------|------------------------------|
| Total Private Land        | Lumshnong/Jaintia hills | 70.00                        |
| (non-forest)              |                         | • Agricultural land – 46.809 |
|                           |                         | • Waste land - 23.191        |

### **Existing Core Zone Land use Pattern**

| Proposed Land Pattern (Area in Ha.) |                                                   |                   |                       |       |  |  |  |
|-------------------------------------|---------------------------------------------------|-------------------|-----------------------|-------|--|--|--|
| Sl.<br>No.                          | Features                                          | Planned<br>period | Beyond planned period | Total |  |  |  |
| 1                                   | Mining                                            | 8.64              | 47.13                 | 55.77 |  |  |  |
| 2                                   | Over Burden Dump to be used for mining            | 2.25              |                       | 2.25  |  |  |  |
| 3                                   | Infrastructure<br>(workshop, admn. Building etc.) | 0.02              |                       | 0.02  |  |  |  |
| 4                                   | Roads                                             | 0.2               |                       | 0.2   |  |  |  |
| 5                                   | Magazine                                          |                   |                       |       |  |  |  |
| 6                                   | Green Belt                                        | 10.0              | 1.56                  | 11.76 |  |  |  |
|                                     | Total                                             | 21.11             | 48.69                 | 70.00 |  |  |  |

| Area in Ha.                |            |               |               |             |       |  |  |
|----------------------------|------------|---------------|---------------|-------------|-------|--|--|
| Land use                   | Plantation | Water<br>Body | Public<br>Use | Undisturbed | Total |  |  |
| Mining                     | 58.02      |               |               |             | 58.02 |  |  |
| Road and<br>Infrastructure | 0.22       |               |               |             | 0.22  |  |  |
| Green Belt                 | 11.76      |               |               |             | 11.76 |  |  |
| Total                      | 70.00      |               |               |             | 70.00 |  |  |

### **Post-operational Land use**

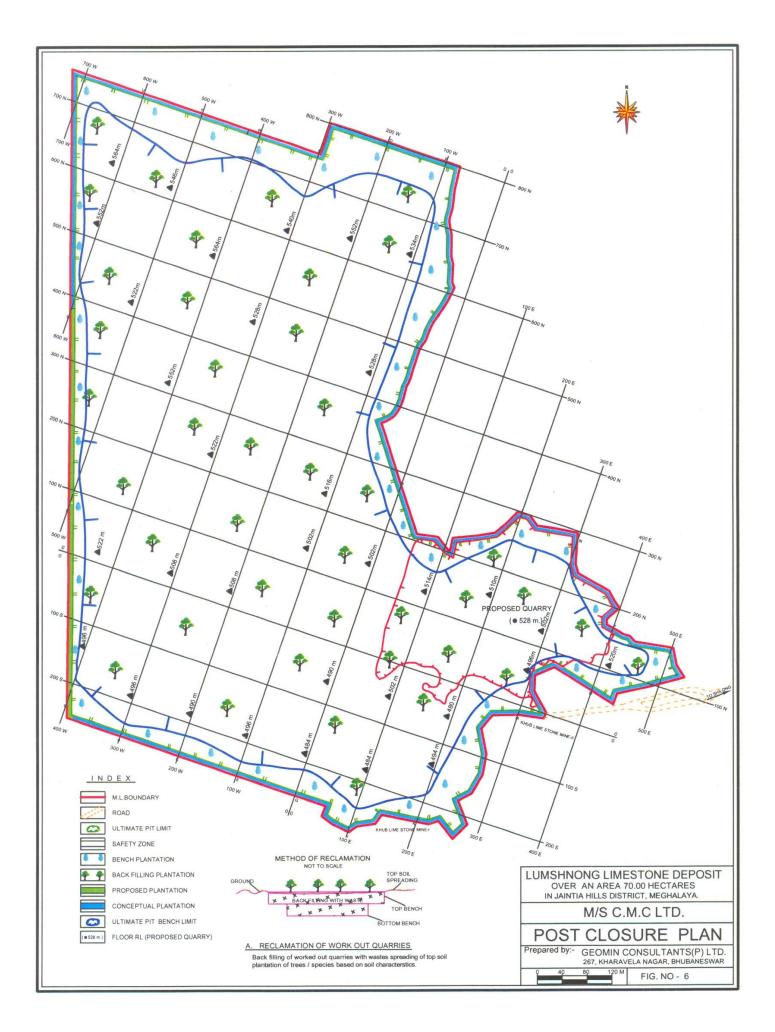
### Environmental Impact and Management Stage-wise Cumulative Plantation

| <b>REQUIREMENT OF PLANTS FOR AFFORESTATION / RECLAMATION</b> |                   |       |                         |       |                  |       |              |       |              |        |
|--------------------------------------------------------------|-------------------|-------|-------------------------|-------|------------------|-------|--------------|-------|--------------|--------|
| Year                                                         | Un-worked<br>Area |       | Out Side Dump Dump Area |       | Top Soil<br>Dump |       | Total        |       |              |        |
|                                                              | Area<br>(Ha)      | Trees | Area<br>(Ha)            | Trees | Area<br>(Ha)     | Trees | Area<br>(Ha) | Trees | Area<br>(Ha) | Tree   |
| 1st                                                          | 2.0               | 3200  |                         |       |                  |       |              |       | 2.0          | 3200   |
| 2nd                                                          | 4.0               | 6400  |                         |       |                  |       |              |       | 4.0          | 6400   |
| 3rd                                                          | 6.0               | 9600  |                         |       |                  |       |              |       | 6.0          | 9600   |
| 4th                                                          | 8.0               | 12800 |                         |       |                  |       |              |       | 8.0          | 12800  |
| 5th                                                          | 10.0              | 16000 |                         |       |                  |       |              |       | 10.0         | 16000  |
| Ultimate                                                     | 11.76             | 18816 | 58.24                   | 93184 |                  |       |              |       | 70.00        | 112000 |

The post mining land use is represented in Fig. 6.

There will be less chance of improvement in agriculture. By using these land in mining there will generation of employment and revenue.

### 4. ENVIRONMENT MONITORING PROGRAMME


An environmental monitoring cell will be formed for regular environmental assessment on air, water, noise and soil qualities at nearby habitational area. Four permanent Air quality stations will be fixed as per the SPCB guidance to monitor the AAQ in quarterly basis. Quarterly water samples of ground water and surface water shall be collected and analysed. Noise level monitoring at Noise generating points and AAQ locations shall be done in quarterly basis.

### 5. ADDITIONAL STUDIES

Additional studies like soil erosion and nutrient quality at river bed soil will be taken up.

### 6. **PROJECT BENEFITS**

The limestone to be produce from the mine shall be utilised in the plant of the Lessee. In the mining project along with the cement plant shall uplift the socio-economic, educational and cultural status of the local inhabitants.



### 7. ENVIRONMENT MANAGEMENT PLAN

The mining activities will have certain adverse effects on the existing environment like air, water land and noise. The following protection measures will be adopted to minimize pollution.

- Provision of planting emission, noise absorbing species (with dense/thick type canopy), soil erosion control and nutrient enhancing species
- To suppress fugitive dust, provision of water sprinkler, dust extractor etc at the dust generation source
- Adoption of control blasting techniques (using advance non-electric detonator)
- Construction of garland drains around the quarry area and dumps with proper gradients
- The settling tank will have adequate dimension
- Drain and channel on Overburden dump in to sedimentation pond before discharging into natural drainage
- Proper maintenance of plant and machinery
- Providing sound proof cabins with proper ventilation
- Provision of personal protective equipments according to the pollution.
- Dump yard stabilization through grading, compacting and suitable plantation
- Stone pitched walls in garland drains will be prepared to arrest flow of loose sediments.
- Provision of speed breaker (stone pitching) at regular intervals in garland drains
- Phased wise reclamation through backfill

----X----